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Let (... C; be a system of closed curves on a triangulizable surface S. The
system is called minimally crossing it each curve €, has a minimal number of self-
intersections among all curves (] freely homotopice to C; and il cach pair C,, €, has
4 minimal number of intersections among all curve pairs €'}, () freely homotopic to
C,. C, respectively (i, j=1, .., k,i# j). The system is called regular if each point
traversed at least twice by these curves is traversed exactly twice, and forms a crossing.

We show that we can make any regular system minimally crossing by applying
Reidemeister moves in such a way that at each move the number of crossings does
not increase. It implies a finite algorithm to make a given system of curves mini-

mally crossing by Reidemeister moves. ¢ 1997 Academic Press

1. INTRODUCTION AND FORMULATION OF THE THEOREM

Let S be a surface. A closed curve on S is a continuous function
C: S'— S (where S' is the unit circle in the complex plane). Two closed
curves C and C' are freely homotopic, in notation: C ~ C’, if there exists a

continuous function @:S'x[0,1]—S such that @&(z,0)=C(
&z, 1)=C'(z) for all e S".
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For any closed curve C on S, the number of self-intersections (counting
nultiplicities) of C is denoted by cr(C). That is,

cr(C) =3 |[{(w, 2)eS'xS"|Clw)=C(z), w#z}]|. (1)

vioreover, mincr(C) denotes the minimum number of cr(C’) where C’
anges over all closed curves freely homotopic to C. That is,

mincr(C) =min{cr(C")|C' ~ C}. (2)

For any pair of closed curves C, D on S, the number of intersections of
~ and D (counting multiplicities) is denoted by cr(C, D). That is,

cr(C, D)= |{(w,z)eS'xS'|C(w)=D(z)}|. (3)

Moreover, mincr(C, D) denotes the minimum of cr(C’, D') where C' and
D' range over all closed curves freely homotopic to C and D, respectively.
That is,

mincr(C, D) =min{cr(C’, D'}|C' ~ C, D' ~ D}. (4)

Let C,, .., C, be a system of closed curves on a surface S. We call
Crs o Cp minimally crossing if

(i) cr(C;)=mincr(C;) foreach i=1,..k; (51
(i) er(C,, C;)=mincr(C,, C;) forall i, j=1,..,k with i# /.

We call C,, ..., C, a regulur system of curves if C,, .., C, have only a finite
number of intersections (including self-intersections), each being a crossing
of only two curve parts. That is, no point on S is traversed more than twice
by C,, .., C, and each point of S traversed twice has a disk-neighborhood
on which the curve parts are topologically two crossing straight lines. To
such systems of curves we can apply the following four operations called
Reidemeister moves:

0. replacing ~O~ by “O™ (type0);
1. replacing Q by ~ (typel); 6)
II. replacing >=< by > (type II);

(

III. replacing &\ by %/ type I11).

The pictures here represent the intersection of the union of C, ..., C; with
an open disk on S. So no other curve parts than the ones shown intersect
such a disk.

Here and below we take all statements ropologically. For instance, an
open disk is any topological space homeomorphic to an open disk. Pictures
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are taken up to topological transformations. As an ‘implicit’ Reidemeister
move we take shifting all curves simultaneously over the surface, by an
isotopy @:S— S (thus not changing the combinatorial structure of the
system of curves).

The main result of this paper is:

TueoreM 1. Let S be a triangulizable surface. Then any regular system
of closed curves on S can be transformed to a minimally crossing system by
a series of Reidemeister moves.

This theorem will be used in a subsequent paper [4] to prove a theorem
on decompositions of graphs and a homotopic circulation theorem.

It is important to note that the main content of Theorem 1 is that we do
not need to apply the operations (6) in the reverse direction—otherwise the
result would follow quite straigthforwardly with the classical techniques of
simplicial approximation (as applied by Reidemeister [6]). Clearly, the
reverse of a type III Reidemeister move is again a type III Reidemeister
move; similarly for type 0. However, this does not hold for types I and II.

The theorem has as a consequence:

COROLLARY la. There is a finite algorithm to transform a given regular
system of closed curves on a surface, to a minimally crossing system of closed
curves by Reidemeister moves.

We can assume here that the system is given in a combinatorial way.
That is, the curves are given by the graph formed by their embedding, and
the surface by the faces made by that graph. For our purposes it only mat-
ters if a face is topologically a disk or not. This all can be described in a
finite way.

The reason that our theorem gives a finite algorithm is that we can apply
the Reidemeister moves without increasing the total number of crossings.
So in a brute force way, we could enumerate all possible configurations
that arise from the given system by any series of Reidemeister moves
type III (there are only finitely many of them, since there are only finitely
many graphs with a given number of vertices, and since for each graph
there are only finitely many ways of attaching faces). Next we see if we can
apply to any of these configurations a Reidemeister move of type 0, I or IL
If so, we can continue with a simpler system; that is, with fewer crossings
or with fewer closed curves (by removing a homotopically trivial closed
curve). If not, our theorem says that the system is minimally crossing.

We can arrive at this conclusion by our theorem. If we would need to
apply Reidemeister moves of type 1 or II also in the reverse direction, we
would not obtain a finite procedure.
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2. SOME FURTHER TERMINOLOGY AND NOTATION

Let S be a surface. A curve on S is a continuous function C: I — S where
I'is a connected subset of S'. It is closed if I=S", nonclosed if [+ S", and
simple if it i3 one-to-one.

Let C be a curve on a surface S and let 4 =S. We call L a chord on A
of Cif L=C|I for some connected component [ of C "'[4]. We call L a
chord on A of C,, .., C, if L is a chord on 4 of one of C,, ..., C,.

A closed curve C is called nullhomotopic if it is freely homotopic to a
constant function. It is orientation-preserving if passing once around C does
not change the meaning of ‘left’ and ‘right’. Otherwise, C is orienta-
tion-reversing.

We will, if no confusion arise, identify a closed curve C: S'— S with its
image C[S']. Moreover, we identify a closed curve C with any closed
curve C'=C-¢ if ¢: S' - S' is a homeomorphism isotopic to the identity.

3. REDUCTION TO COMPACT SURFACES WITH
A FINITE NUMBER OF HOLES

A compact surface with a finite number of holes is a surface arising from
a compact surface by deleting a finite number of points. (So a compact sur-
face with a finite number of holes need not be compact.)

We show that to prove Theorem 1 we may restrict ourselves to compact
surfaces with a finite number of holes.

Let S be a surface and let S’ <S. For closed curves C and D on §'
denote the function mincr by miner’ if it is with respect to S’. Clearly,

mincr’(C) = miner(C) and mincr’(C, D) = mincer(C, D). (7)

ProOPOSITION 1. Let S be a triangulizable surface and C,, .., C, be a
regular system of closed curves on S. Then S contains a compact surfuce S’
with a finite number of holes such that S’ contains C,, ..., C, and such that
mincr'(C,) = miner(C,) for each i and mincr'(C,, C;) =mincr(C;, C,) for all
i, jli # J).

Proof. Consider a polygonal decomposition of S in which each vertex
has degree 3. For all 7, j with 1 <i< j<k, let 4, , be the set of all polygons
traversed when shifting C; and C; to some closed curves C; and C’ (respec-
tively) satisfying cr(C’, C}) =mincr(C;, C;). Similarly, for each i=1, ...k
let 4, be the set of all polygons intersected when shifting C, to some closed
curve C7 satisfying cr(C’) = mincr(C,). Note that each 4, ; and each 4, is
finite. Let S’ be the union of all 4, ;and 4;. Then S’ is a compact bordered
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surface with a finite number of boundary components, and the proposition
follows. §

Proposition 1 shows that in the sequel we may assume:

S is a compact surface with a finite number of holes. (8)

4. THE DISK

One important ingredient in our proof is a theorem of Ringel, and an
extension of it, on shifting curves in a disk.

Let U be a closed disk. Consider systems of nonclosed curves C|, .., C,
on U satisfying:

(1) each C,is simple and has end points on bd(U);
(ii) if i#J, C, and C, have at most one intersection, being a
crossing;
(iii) each point of U traversed by at least two curves belongs
to the interior of U and is a crossing of two curve parts,
and is not traversed by any other curves.

Ringel [8] showed:

THEOREM 2 (Ringel’s theorem). Let U be a closed disk. Let C,, ..., C,
and C', ..., C}. be systems of curves on U each satisfying (9). For each i, let
C; and C'; have the same pair of end points. Then C,, ..., C, can be moved to

" Ci by a series of Reidemeister moves of type I, each applied to the
interior of U.

Next consider systems of curves C,, ..., C, on U satistying:

(1) each C, is either closed and disjoint from bd(U) or is
nonclosed and has two distinct end points on bd( U);

(it) each point p of U traversed by at least two curve (10)
parts belongs to the interior of U and is a crossing of
the two curve parts while no other curve parts
traverse p.

Call a system satistying (10) minimally crossing if each curve is simple,
and any two curves have at most one intersection. We derive from Ringel’s
theorem:

THEOREM 3.  Any system of curves on U satisfying (10) can be trans-
Jormed to a minimally crossing system by u series of Reidemeister moves.
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Proof. Let C,, .., C, be a system of curves on U satisfying (10). We
may assume that no series of Reidemeister moves decreases the number of
(self-)crossings. We show that the system is minimally crossing, by induc-
tion on the number ¢ of crossings (including self-crossings) of C,, ..., C,.

We first show that each of the C, is simple. Suppose, say, C, is not sim-
ple. Then C, contains a simple ‘loop’ L—that is, there is an interval
I=[x, y] such that C,|/ is one-to-one, except that C,(x)= C,(y). Let U’
be a disk in U containing L and its interior, except for a ‘small’
neighbourhood of C(x). So U’ contains less than ¢ crossings, and hence,
by the induction hypothesis, the chords of the C; on U’ are minimally
crossing. Hence the chord L~ U’ does not intersect any of the other
chords. Therefore, all other chords are actually pairwise disjoint closed cur-
ves contained in the interior of L. With Reidemeister moves of type 0 they
can be moved to the exterior of L. After that we can apply a Reidemeister
move of type I to remove L, contradicting the minimality of the number of
crossings.

We next show that any two of the C; cross each other at most once. Sup-
pose that, say, C, and C, cross each other more than once. Then there
exist intervals I, =[x,, »,] and I,=[x,, »,] such that C,|/, and C,|/,
are disjoint, except that C,(x,)=C,(x,) and C,(y,)=Cs(y,). Let L be
the digon formed by C,|I, and C,|[,. Let U’ be a disk on U containing
L and its interior, except for a small neighbourhood of C(x,). So U’ con-
tains less than ¢ crossings, and hence, by the induction hypothesis, the
chords of the C, on U’ are minimally crossing. By Ringel’s theorem
(Theorem 2) we can apply Reidemeister moves so that the two chords formed
by C,[/,] and C,[ I,] have a crossing ‘close’ to C(x,). in such a way that
the digon formed in the new situation does not contain any other curve
parts. Hence it can be removed with a Reidemeister move of type II. This
reduces the number of crossings, and hence contradicts the minimality of
the number of crossing. |

5. PROPERTIES OF MINIMAL COUNTEREXAMPLES

With the help of the results of Section 4 we derive in this section some
properties of ‘minimal counterexamples’ to Theorem 1. Let .S be a tri-
angulizable surface and let C,, .., C, be a regular system of closed curves
on S. We call C,, .., C, a minimal counterexample if the following holds:

(i) the system C,, ..., C, is not minimally crossing;

(ii) no series of Reidemeister moves Qegreases cr( C,.) t‘o.r any
ie{l, ..k} orcr(C, C) forany i, je {1, ... k}(i# j);

(i11) k& is minimal (under (i) and (ii)).



140 DE GRAAF AND SCHRIJVER

It is obvious that any system obtained from a minimal counterexample
by applying a series of Reidemeister moves of type III, is a minimal coun-
terexample again (since such operations are reversible). Furthermore, we
cannot apply a Reidemeister move of type 0, I, or II to any minimal coun-
terexample.

ProrosiTION 2. Let Cy, ..., C, be a minimal counterexample on S and let
A be an open disk on S. Then the chords of C, .., C, on A are minimally
crossing, and none is a closed curve.

Proof. Directly from Theorem 3 and (11)(i1). J

In particular:

ProrosITION 3. Let Cy, ..., C, be a minimal counterexample on S. Then
there is no open disk containing any of the curves C, for i=1, .., k.

Proof. Directly from Proposition 2. |}

Next we show:

ProPOSITION 4. Let C,, ..., C, be a minimal counterexample on S. Then
k<2 and if k=2 then cr(C;)=mincr(C)(i=1, 2).

Proof. We first show for any regular system C,, ..., C, of closed curves
on S:

7

if C,, ... C,_, can be transformed to closed curves C, .., C} _,
by a series of Reidemeister moves, then there exists a closed
curve C, such that C,, .., C, can be transformed to C', .., C;
by a series of Reidemeister moves. (12)

To see this we may assume that C, ..., C ., arise from C|, .., C, _ by one
Reidemeister move. We assume this is a Reidemeister move of type IIl—the
other types follow similarly.

Let P, O, R be the three chords of C, ..., C, ., on an open disk 4 < § to
which the Reidemeister move is applied. Note that C,, .., C, ., do not
have other chords on A4, but C, can have chords on 4.

By Proposition 2 we know that the chords of C|, .., C; on A4 are mini-
mally crossing, and by Theorem 2 we may assume that the triangle
enclosed by P, Q and R does not intersect any of the chords of C, on 4.
After this we can apply the Reidemeister move to P, Q, R and we obtain
(12).
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It implies:
Let Cy, ..., C;, be a minimal counterexample on S. Then for each
re{l, ..k} the system C,,.,C,_|,C,,,,...C, is minimally
crossing. (13)

For suppose that, say, C,, ..., C, _, is not minimally crossing. By (11)(iii)
there is a series of Reidemeister moves bringing C,,...C, _, to

14w Cie_y s0 that for some i€ {1, ...,k—1}, cr(C) <cr(C;) or for some
ije{l,.,k—=1}, cr(C}, C)) <cr(C;, C)(i# j). By (12) there is a curve C)
and a series of Reidemeister moves bringing C,,..,C,_,,C, to
C, .., C,_,, C). This contradicts (11)(ii).

So we have (13), which gives the proposition. |

6. SPHERE, OPEN DISK, AND PROJECTIVE PLANE

We now have directly:

ProOPOSITION 5. Theorem 1 is true in case S is a sphere or an open disk.

Proof. Directly from Proposition 3. |

PROPOSITION 6.  Theorem 1 is true in case S is the projective plane.

Proof. Let Cy, .., C, be a minimal counterexample on S. Let D be a
simple closed nonnullhomotopic curve on S so that D, C,,..,C, is a
regular system of curves and so that £:=Y*_ cr(D, C,) is minimal. Let
A:=S\D. So A4 is an open disk. We may assume that 4 is the unit open
disk in C and that S is obtained from the closed unit disk X in C by iden-
tifying opposite points on the boundary of K. By Proposition 2 each chord
of A is a simple path connecting two points on bd(K) and each two chords
intersect each other at most once. Moreover, by Ringel’s theorem and
Proposition 2 we may assume that all chords are straight line segments
with endpoints on bd(K).

Now if there is a chord / that does notr connect two opposite points on
bd(K), then there is a straight line segment connecting two opposite points
on bd(K) and not intersecting /. This would give a nonnullhomotopic
closed curve on S having fewer intersections with C|, ..., C; than D—a con-
tradiction.

So each chord connects two opposite points, and hence each chord
corresponds to one nonnullhomotopic closed curve C,(ie {1, .., k} ). Hence
the system C|, ..., C, is minimally crossing, contradicting (11)(i). [

382b70 1-10
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7. MINIMIZING THE CROSSING NUMBER OF PERMUTATIONS

Theorem 1 for the special cases of the annulus and the Mgbius strip
turns out to boil down to statements on permutations. These statements
are basic also for our proof for more general surfaces.

Let 7 be a permutation of {1, ..,n}. A crossing pair of 7 is a pair {i, j}
with (i — j)(z(i) —7(j)) <0. The crossing number cr(m) of n is the number
of crossing pairs of z. (In Bourbaki [2] and Geck and Pfeiffer [3] the
number cr(z) is called the length of the permutation 7.)

Let mincr(z) denote the minimum of cr(z’) taken over all conjugates =’
of #. So mincr(z) only depends on the sizes of the orbits of 7.

A transposition is any permutation (k, k + 1) for some ke {1, ...,n—1}.
Since each permutation o is a product of transpositions t,, ..., 7,,, it is tri-
vial to say that for each permutation r there exist transpositions t,, ..,
such that

m

cr(t,,---1,7T,---T,,) =mincr(mn). (14)

What however can be proved more strongly is:

THEOREM 4. For each permutation m of {1, .., N} there exist transposi-
tions t,, ..., T,, such that (14) holds and such that moreover:

cr(t; -ty --- ) <er(r;, T AT T ) (15)

foreach j=1, .., m.

That is, when going step by step to mincr(z) we never have to increase
the number of crossings. In Section 9 we shall see that a similar statement
also holds if we maximize the number of crossings.

We should remark here that Theorem 4 has been proved by Geck and
Pfeiffer [ 3] for all Weyl groups (including the symmetric group). Its coun-
terpart for maximizing, Theorem 5, is, according to our information, not
known for Weyl groups. For completeness we give a proof of Theorem 4,
for which we use the following proposition (which is also easy to derive
with the theory developed in Bourbaki [2] (Chapter 4 Section 5) for the
more general Coxeter groups).

PROPOSITION 7. Let m be a permutation, let t be the transposition
(k,k+1), and let ' .= tnt. Then:

cr(n') <cr(n) ifandonly if n'=n (16)
or nlk)>n(k+1) or 1w Yk)y>n Yk+1).
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Proof. To see sufficiency, suppose cr(z')>cr(n). Then clearly ' # .
Moreover, by parity, cr(n’)>cr(z)+2. Hence =’ has a crossing pair
{i, j} #{k, k+ 1} such that {z(i), ()} is not a crossing pair of 7. We may
assume that i<, and hence t(i)<7t(j). So tmz(i)>tnr(j) and
nt(i) <nt(j). Hence nt(i)=k and nt(j)=k+1. So = '(k)=t(i)<t(j)=
7 W (k+1).

One similarly shows that m(k)<mn(k+1) (since cr(z’ ')=cr(n')>
cr(n)=cr(z")).

To see necessity, suppose 7’ # 7, n(k) <m(k+1) and = '(k) <z '(k+1).
Then for each crossing pair {i, j} of x, the pair { (i), 7(/)} is a crossing pair of
7. Indeed, we may assume i < j; hence n(/) > n( ). Since n(k) <n(k +1) we
know {i, j} # {k, k+1}. So (i) <z(j). If {z(i), 7(j)} is not a crossing pair of
7', we have 7'(7(i)) <z'(7(/)); that is, ©(r(i)) <t(n(j)). So {n(i), n(j)} =
{k,k+1},andhencen(i)=k + landn(j)=k.Sor "(k+1)=i<j=nr k),
a contradiction.

Hence cr(n') > cr(n). To show strict inequality, we show that {k, k+ 1}
is a crossing pair of . (Note that it is not a crossing pair of x.)

Suppose {k, k+ 1} is not a crossing pair of 7". So (k) <n’(k + 1). That
is, o(n(k + 1)) <t(n(k)). As m(k+1)>n(k), we know {m(k),n(k +1)} =
{k, k+1}. But this would imply that 7’ = 7, contradicting our assumption. ||

We put o’ <r if there exist permutations 7, .., 7, such that z,=n
n,=m, and foreachi=1, .., t, cr(n;, ,)<cr(x;) and there exists a transposition
t such that n,=1tn, ,7. (Possibly 1=0.) So < is reflexive and transitive.

Proof of Theorem 4. We show that for each permutation 7 on {1, .., n}
there exists a permutation 7' <« such that 7’ = (1,2, ... /) j, + 1. ... ja) -+
(jo_1+1, .., j,) for some j, < j, < --- < j,=n. This proves the theorem, since
the number of crossing pairs of =’ only depends on the sizes of the orbits.

Represent permutation ' as

7= (ks kK e ) oo (K e K (17)

Choose #' and this representation so that z' <7 and so that the vector
(ky, ... k,) is lexicographically minimal. We may assume that 7' = 7.

We show that k;=j for j=1, .., n. Suppose this is not the case, and
choose r satisfying k, #r, with r as small as possible. So k;= j for all j<r,
and k, >r.

By the lexicographic minimality of representation (17), k, is not the first
of any of the orbits in this representation (otherwise we could choose r as
the start of a new orbit). So = '(k,)=k, ,=r—L

Define 7' :=1tnr, where t:=(k,—1,k,). Then = '(k,—1)e{r, .. n},
implyingz 'k, —1)=r>r—1=mn'(k,). So by Proposition 7, cr(n') < cr(m).
This contradicts the lexicographic minimality of representation (17).
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Note that from the proof of Theorem 4 we also obtain:
miner(z) =n—s (18)

for any permutation 7 of {1, ..., n} with s orbits.

8. THE ANNULUS

Theorem 4 implies Theorem 1 in case S is the annulus (the sphere with
two points deleted).

PROPOSITION 8. Theorem 1 is true in case S is the annulus.

Proof. Let C,,..,C, be a minimal counterexample on S. We may
assume that S is obtained from the square K=[0, 1] x (0, 1) by identifying
(0, x) and (1, x) for each xe(0,1). Let 4,:=ix (0, 1), let A denote the
curve on S arising after identifying 4, and A4,, and let U=(0, 1) x (0, 1).

We may assume that we have chosen the representation so that
A, C,, .., C, is regular and so that the number of crossings of 4 with
C,, ... C, is as small as possible.

Then each chord of C,, .., C, on U connects A4, and 4, (when taking
their closures in K). (Otherwise we could (with the help of Ringel’s
theorem) decrease the number of crossings of 4 with C,, ..., C,.) So we can
orient each chord so that it runs on K from A4, to 4,.

Let x,,..,x, be the crossing points of C, ..., C, with 4, in order. So
there is a permutation 7 of {1, .., n} such that the chord starting at x, at
A, ends at x,;, at A, (i=1, .., n). Note that cr(x) is equal to the total num-
ber of crossings of Cy, ..., Cy.

Now we have the following:

if T is a transposition such that cr(tz7)<cr(z), then we can
apply Reidemeister moves to C|, ..., C, such that the associated
permutation becomes equal to 7t (19)

Indeed, let t=(m,m+1). By Proposition 7, we may assume that
n(m)>mn(m+ 1). Hence the chords starting at x,, and at x,,, , cross. There-
fore, by Ringel’s theorem we can apply Reidemeister moves so that their
crossing is the first in both of these chords. Then by a topological transfor-
mation we can shift the crossing beyond 4. This makes that = is transformed
to twr. This shows (19).

Now if k=1, = has one orbit. Let C be a closed curve on S freely
homotopic to C, satisfying cr(C’) =mincr(C,). Then C' gives similarly a
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permutation n’. As C' is freely homotopic to C,, n' is conjugate to 7. As
cr(Ch) <cr(C;), we know that cr(zn’) < cr(m).

So by Theorem 4 there exist transpositions t,,.., 7, such that
cr(t; - Tymry - )Ker(r; -ty ---7; ) for each j=1,..,m, with
strict inequality for j=m. But this would give by (19) a series of
Reidemeister moves so as to decrease the number of self-crossings of C,—
contradicting the fact that C, is a minimal counterexample.

If k=2, then 7 has two orbits. Then we can consider similarly closed
curves (', C, freely homotopic to C,,C, respectively, satisfying
cr(Cy, Ch)y=mincr(C,, C,). |

9. MAXIMIZING THE CROSSING NUMBER OF PERMUTATIONS

If we want to apply a similar technique to the Mbius strip, we have to
consider maximizing the number of crossings of permutations. We define
maxcr{7m) to be the maximum of cr(n') taken over all permutations 7’ con-
Jjugate to m. Again trivially for any permutation z there exist transpositions
T\ . T,, sSuch that

cr(t,, -t nt, -+ 7,,) =maxcr(n). (20)

Again this can be sharpened to:

THEOREM 5. For each permutation m there exist transpositions T, ..., T
such that (20) holds and such that moreover:

m

er(t, - Ty T ZCr(T, T AT e T, ) (21)
Joreach j=1, .., m.

We prove Theorem 5 directly only in case = has one or two orbits. The
general case follows from Proposition 12 below.

We first show a few propositions. We define =< as in the proof of
Theorem 4.

Denote the sequence 1,n,2,n—1,3,n—2, ... by a,, a,, ay, a,, ds, ... SO
=8 if r=2s—1,

(22)
a=n—s+1 if r=2s.

Hence a,=n/2 |+ 1.
Define permutation =, of {1, .., n} by

T, o=y, dsy . @,). (23)
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Moreover, if 4, k > 1 with h + k = n, define permutation 7, , of {1, ..., n} by
TC/I./\' :=(al’ (] all)(all—+-l’ s au)‘ (24)

So 7, , has orbits of sizes 4 and k.

PROPOSITION 9. Let & be a permutation of {1, .., n}.

(i) If @ has one orbit then n<Xn,,.

(ii) If m has two orbits, of size h and k, where 1 belongs to the orbit
of size h, then n<7, ,.

Proof. Write 7= (k,,...k,) (in case (1)) or = (k, ... k) kpy1s - k,)
(in case (ii)), in such a way that (k,, —k,, ks, —k,, ...) is lexicographically
minimal.

We show that k;=a; for j=1, .., n, thus proving the proposition. Sup-
pose k, # a, for some r, which we choose as small as possible. So k; = a; for
j=1,..r—1land k., e{a,,,, ... a,}. Clearly, k, =1, so r# 1. Moreover, in
case (ii), r#h+1 (since otherwise (k,,..,k,)=(a,,..a;), S0
a,elk,.y, . k,}, and we can put g, in the position of &, , ,; this would
contradict the lexicographic minimality assumption).

This implies

n Yk)=k |=ua, ,. (25)

Case 1. r is odd, say r=2s+1. So a,=s+1, {k,, .. k. }=
{ay, nast ={1,..s}u{n—s+1 .,n} and

{hoy sk, ={s+1, . n—s}. (26)

By the choice of r we have that k,#a,=s+1, and so by (26)
s+2<k,<n-—s, and hence k,—le k., ... k,}. Therefore,

Nk, — 1 elk,, .k, ={s+1, ., n—s}. (27)

Define 7:=(k,~1,k,) and #':=7rr. Then by (25) and since
k,—1k,e{s+1,..,n—s},

n Yk.—l)y=m 'tk,— )=t Yk,)
=1k, )=k, =a, =n—s+1 (28)
Moreover,

k)=t 'tk,)=t "(k,—1)e{s+1, ... n—s} (291

asw “(k,—1)e{s+1,..,n—s} (by(27))and ask,, k,—1e{s+1, ., n—s
By (28) and (29), o’ '(k,)<=n’ '(k,—1), implying by Proposition 7 that
cr(n') =z cr(n); so n X7



MAKING CURVES MINIMALLY CROSSING 147

This contradicts the lexicographic minimality assumption, since
T[/z(kl,...,k,. ],kl._‘l,...).

Case 2. v is even, say r=2s. So a,=n—s+1, {k,, ..k, }=
{I, st u{n—s+2,.,n} and

(ks ke, ={s+1, . ,n—s+1}. (30)

By the choice of r we have that k. #a,=n—s+1, and so by (30),
s+1<k.<n-s, and hence k., + 1€ {k, |, ... k,}. Therefore,

ok, + 1) elk, k) ={s+1,. n—s+1}. (31)

Define rt:=(k,.k,+1) and =':=wzr. Then by (25) and as
kok,+1le{s+1, . .n—s+1},

 k+ D)=t 'tk,+ )=t k,)=1k, )=k, |=a, ,=s (32)

Moreover,

Nk =trn 'tk)=tmr "(k,+1)el{s+1, . .n—s+1}, (33)
as m '(k,+1)e{s+1,.,n—s+1} (by (31)) and as k, k. +1le
s+l n—s+1}.

By (32) and (33) n’ '(k,)>n' 'k, +1), implying by Proposition 7 that

cr(n'y=cer(n); so mw=<Xn'. This again contradicts the lexicographic mini-
mality assumption, since ' =(k,, ...k, .k, +1,..). 1|

At this point we have shown Theorem 5 for permutations 7 with one orbit.
It follows that for any permutation = of {1, ..., n} with only one orbit one has

maxcr(n)=cr(7z,,)=<’;>-[n;IJ. (34)

Next:

PROPOSITION 10. If h is even then cr(rm, ,) <cr(m, ;).

Proof. Observe that if i, je {k+1, .., n} and {a,,q;} is a crossing pair
of my,. then {a; ,,a, ,} is a crossing pair of =, ,. Similarly, if
i jet{l, ...k} and {u,, a;} is a crossing pair of 7, ,, then {a,,,, a;,,} is
a crossing pair of 7, .

Finally, each pair {a,, a,} with 1 <i<h< j<n,is a crossing pair of 7, ;.
So we obtain the required inequality. ||

Proposition 10 implies the theorem for permutations with two orbits of even
size each. Indeed, by Proposition 9 we have that for each permutation 7 with
two orbits, of even sizes h and k, one has n<r,, or =<7, ,. As by
Proposition 10 one has cr(z,, ;) = cr(n;_,), both 7, , and 7, , attain maxcr(r).
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We are left to consider permutations with two orbits, at least one of
them being odd. Then we have:

ProrOSITION 11. Let h be odd and let k be such that k is even or k> h.
Then m), <7y -

Proof. We may assume that £ =2 (otherwise k =h =1, and the claim is
trivial).

By Proposition 9 it suffices to show that there exists a permutation n
such that 7, , <7 and such that the orbit of z containing 1 has size k. To
this end, it suffices to show that there exists a permutation 7 such that
7, « <7 and such that the orbit of = containing »n has size k. This follows
from the fact that if » belongs to the orbit of size &, then we may assume
that n(n) = 1, and hence 1 belongs to the orbit of size k.

Let u:=[n/27. Consider permutations = such that =z, , <7 and such
that

7T=(1,k2,...,k/,)(kh+[,...,k”) (35)

where

(i) k;+k; ,=n+2 for eacheven i<n;
() k;<k;,- foreachodd ig<n—2 with i##h; (36)
(i) k,<u foreachodd i<n

Such permutations 7 exist since (24) is of this form. Choose 7 such that
ki+ks+ --- +k, is as large as possible.
Note that condition (36)(iii) implies that

{k;|iodd} ={1,2,..,uf. (37)
We first show:

Let k;=k,+ 1 with /, j odd and 3<i<h<,j<n Theni<h and
j<n. Moreover, if j<n—2, then k;, » >k, . (38)

Indeed, suppose to the contrary that i=h, or j=n, or j<n-—2 and
k; <k, ,. Then n(k,)<mn(k,. For if i=h then =n(k,)=1<n(k). If
i<h—2and j=nthen k,,,>k,+1=k,>k,,,, and hence n(k,) =k, =
n+2—k, 2<n+2—k,, =k, =nlk). If i<h—2 and j<n-2 and
k;y,<k;,,, then nk)=k, \=n+2—k,.<n+2—k; =k, =nlk;)
So n(k;) <nlk)).

Now let t:=(k,k,) and 7 :=trnt. As =u(k)<n(k;), we have

n'(k;)>=n'(k,), and hence Proposition 7 gives cr(n’) =cr(n). So n=<7'.
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Let v:=(k, .k, ) and #n":=7'n't". Since k, =k, ;+1 and
w'k,_ ) =tnlk, )=tlk)=k,>k;,=1t(k)=1n(k, )=n'(k; ), we know
n"(k;_,)<n"(k;_,), and hence, again by Proposition 7, cr(z") = cr(x’); so
7' X7". Hence n X n".

However, the representation of n” is obtained from that of = by inter-
changing k, and k; and by interchanging k; | and &, . This contradicts
the maximality of &y +ks+ --- +k,. Thus we have (38).

From this we derive that k; >3, which finishes the proof, as it implies
that k,,,=2 and hence k,,,=n.

First we have k,=u. For suppose k, <u. Then by (37) there exists an
odd je{h+1, .., n} such that k,=k, + 1, contradicting (38).

Next if & is even, then k,,,=k;+1 for each odd / in {3<i<h-2}.
Otherwise, choose the largest odd i in {3, .., 1—2} for which k;, , >k, + 2.
Then there exists an odd je {h+2,..,n} such that k;=k,+1. Then by
(38), j<n—1, and hence (as n is odd), j<n—2. So by (38), k;,>>k; >,
contradicting the maximality of /i (since k,,.<k;,,<u=k,). Hence
ki=u—(h—3)/2=3 (since 2u=n+1=h+k+12h+3as k=2).

If k is odd, then n is even and k> /. Then k,,,<k,, , for each odd i
in {3<i<h-—2}. For suppose k,,,>k,+3. Then there exists an odd
je{h+2,..,n—3} such that k;=k,+1 and k, ,=k,+2. Then (38)
implies k,+2 =k, , >k, ,, a contradiction. Therefore, ky>u—(h—3)=3
(since 2u=n=h+k=2hask=h) |}

This finishes the proof of Theorem 5 for permutations with two orbits.
Indeed, let 7 be a permutation with two orbits, of size 4 and k respectively,
where % is odd and k is even or k = /. Then by Propositions 9 and 11,
=<7, ,. So 7, , should attain a maximum number of crossings.

In fact, we obtain maxcr(x)=cr(n, ,) for any permutation with two
orbits of size & and k, where % is odd, and k is even or k = A. Concluding,
for any permutation with two orbits, of sizes /# and k:

maxcr(n) = <n> - Vi‘—lJ - V—{—_—I-J —min{h, k} if 4 and k are odd,

2 2 2
(39)
maxcr(n) = <n> h—1 k—:—l otherwise
“\2 2 2 '

10. THE MOBIUS STRIP

Theorem 5 implies Theorem | in case S is the Mobius strip (the projec-
tive space with one point deleted) in the same way as Theorem 4 implies
Theorem | in case S is the annulus as we saw in Section 8.



150 DE GRAAF AND SCHRIJVER

PROPOSITION 12.  Theorem 1 is true in case S is the Mdbius strip.
Proof. Similar to the proof of Proposition 8. J§

We should note here that a reverse derivation from Theorem 1 for the
Mébius strip implies Theorem 5 for permutations with any number of
orbits.

11. GEODESICS ON HYPERBOLIC AND EUCLIDEAN SURFACES

All surfaces for which Theorem 1 remains to be proved are hyperbolic or
Euclidean. It means that these surfaces can be equipped with a geometric
structure, which gives ‘geodesics’ on the surface. Basic ingredient in our
proof then is the fact that each nonnullhomotopic closed curve on such a
surface can be brought arbitrarily close to a geodesic by a series of
Reidemeister moves.

In order to give a more precise formulation and a proof of this statement
we need some definitions and basic facts about surfaces and their universal
covering surfaces, the background of which can be found in Baer [1],
Koebe [5], Reinhart [7], and Stillwell [9].

Let U be the Euclidean or hyperbolic plane. There exists a metric dist on
U such that for any three points x, y, z on U lie, in this order, on a line
if and only if dist(x, z) =dist(x, y) +dist(y, z). An isomerry on U is a
homeomorphism ¢: U— U so that dist(d(x), ¢( y))=dist(x, y) for all
x, y€ U. Thus, an isometry maps lines to lines.

Let S be any compact surface with a finite number of points deleted,
with Euler characteristic x(S)<0. If x(S)=0, S is called Euclidean and if
7(8) <0, S is called hyperbolic. The Euclidean plane (if S is Euclidean) or
the hyperbolic plane (if if S is hyperbolic) can be considered as a universal
covering surface of S. That is, there exists a ‘projection’ function : U= S
with the following properties:

(1) for each ue U there is an open disk N containing u so that
Y|N: N— S is one-to-one;

(i1) if u, ' € U and Y(u)=(u') then there exists an isometry
¢: U— U so that ¢(u)=u' and -~ ¢ =; (40)

(iii) for each closed curve C:S'— S and each uey '[C(1)]
there exists a unique continuous function D: R — U such
that C'(0)=u and such that y - D(x)=C(e?™") for all
xeR. (D is a lifting of C to U.)
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A closed curve J on S is called geodesic if any lifting of J to U is a line and
if J has only a finite number of selfintersections. This last condition means
that there is no closed curve K such that J= K" for some n>1.

Each nonnullhomotopic closed curve on S is freely homotopic to J” for
some geodesic J and some n=1. If S is hyperbolic, then J and » are
unique.

The projection function  transmits the distance function dist on U to a
distance function dist on S given by:

disty(x, y) :=min{dist(x’, y')|x", Y e U Y(x)=x, Y(y' )=y} (41)

for x, ye§. Moreover, we can speak of a ‘piecewise linear’ curve C on S,
of the length length(C) of such a curve, and of convex subsets of .S (these
are the subsets containing with any pair of points x, y also the shortest line
segment connecting x and y). We may assume that each nonnullhomotopic
piecewise linear function has length larger than 2.

We introduce a measure for the distance of a closed curve from a
geodesic. Let C: S'— S be a piecewise linear closed curve on S, and let
D:R— U be a lifting of C to U. If C is nonnullhomotopic, the deviation
dev(C) of C is equal to

inf{¢| D[R] < B(L, ¢) for some line L} (42)

where B(L, ¢) := {xe Uldist(L, x) <e}. If C is nullhomotopic, its deviation
dev(C) is

inf{e| D[R] < B(u. ¢) for some point u}. (43)

ProposiTiON 13.  Let C, ..., C; be closed curves on S and let ¢ > 0. Then
there exists a series of Reidemeister moves bringing C,, .., C; to C', ..., C}
such that dev(Ch) <e for ecach i=1, ..., k.

Proof. We introduce a second measure for the ‘geodesicity’ of a curve.
Let C:S'— S be a closed curve. Let C': R— U be any lifting of C to U.
For any reR, let / be the largest interval on R such that rel and
C'[I1< B(C(1), 1). If I is bounded, let  and s be the end points of /. Define

tort (C') :=length(C'[ I]) —dist(C'(r), C'(s)). (44)

If I=R (so C is nullhomotopic and (" is contained in a disk of radius 1),
then tort(C’) :=length(C’). The ‘tortuosity’ of C is

tort(C) :=sup{tort (C')|re R}. (45)

Obviously, this number is independent of the choice of lifting C" of C.



152 DE GRAAF AND SCHRIJVER

The following relation between dev and tort is easy to see, by continuity:

For each L and each &> 0 there exists a ¢ >0 such that each
piecewise linear closed curve C on S with length(C)< L and
tort(C) < has dev((C) <e. (46)

Now we prove Proposition 13. Let L be the maximum length of the C,.
Take § as in (46). We consider the following operation applied to a point
ueS. Let B(u, 1) be the ball with radius 1 around u. Replace each chord
of Cy. .., C; by the shortest curve on B(u, 1) connecting the end points of
that chord. If C; is contained in B(u, 1) we replace it by a closed curve of
length close to 0.

This operation can be performed by Reidemeister moves (by
Theorem 3). We perform this operation to any u, as long as the replace-
ment reduces the length of at least one C; by more than J. So we can apply
it only a finite number of times, and hence finally tort(C,) < for each i
Therefore, by (46), dev(C,) <& for each i. ||

12. THE HYPERBOLIC SURFACES

Hyperbolic surfaces have the property that each nonnullhomotopic
closed curve is freely homotopic to a unique geodesic—more precisely, to
the power of a geodesic with a unique image. This is used to prove:

PROPOSITION 14. Theorem 1 is true in case S is a hyperbolic surface.

Proof. Let C,, .., C, be a minimal counterexample. By Proposition 4
we know that k<2 and that if k=2 then cr(C,) =mincr(C,) for i=1,2.
Moreover, from Propositions 2 and 13 we know that each C; is non-
nullhomotopic. Let J; be a geodesic with C, ~ J?" for some n,>1. Let G, be
the image of J,. So G, is a graph embedded on S. As the J, are geodesic,
we know that if G, # G, then G, nG,. is finite.

Let G be the graph G, U --- UG,. Let ¥V and E denote the vertex set
and edge set of G. By introducing some extra vertices of degree 2, we may
assume that G does not have loops or multiple edges. Moreover, we may
assume that V' is also the vertex set of each G,. For each veV and each
i=1,..,k, let d.; be half of the valency of v in G,.

Now we consider a neighbourhood of G—in fact, we consider a
polygonal decomposition of it. To this end we choose for each vertex v a
convex polygon P, containing v in its interior, and for each edge ¢ a convex
4-gon P, such that any edge e=uv is contained in the interior of
P,UP, UP,. We can assume that the P, are mutually disjoint and that
the P, are mutually disjoint, while P, and P, intersect if and only if v is
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incident with e. In that case, P, and P, intersect in a side both of P and
of P,. Moreover, each side of any P, is equal to the intersection of P, with
P, for some edge e incident with v. So, if ¢ and ¢’ are ‘opposite’ edges inci-
dent with vertex v, then P, and P, intersect P, in opposite sides of P,. We
can also assume that if v and v’ are the vertices incident with edge e, then
P, and P, intersect P, in opposite sides of P,.

Choose ¢>0 such that for each edge e=uv, Ble,¢) is contained in
P,uP,uP,. By Proposition 13 we may assume that we have applied
Reidemeister moves to C, ..., C; so that dev(C;) <¢ for each i. Hence the
C, are contained in the interior of the union of the P, and P.. We may
assume moreover that no crossing of the C; is on any side of any P,. and
that we have applied Reidemeister moves so as to minimize the number of
intersections of the C; with the sides of the P,. By Proposition 2 the chords
of the C; on any P, and on any P, are minimally crossing.

This implies the following. Let J, form the circuit (¢, e,, vy, ..., €,, ,) In
G, with v,=v,. Then C, traverses P, P,,P,,...,P, . P, in this order,
repeatedly—that is, n, times. After entering a polygon at some side, it
leaves the polygon at the opposite side. We may assume that any two
chords of the C, on any P, cross each other only if they connect two dif-
ferent pairs of opposite sides.

First, suppose that kK =1. Choose an edge ¢, of G, with ends v, and v,
say. Then we may assume that P, does not contain any self-crossing of C,,
except if ¢ = e,,. (This can be seen as follows. If ¢ and ¢’ are opposite edges
of G incident with vertex v of G, then P, u P, u P, forms a disk. So by
Ringel’s theorem (Theorem 2) we can ‘move’ crossings from P to P..)

Let R:=P, nP,. Let n:=n,. Let p,, ..., p, be the crossing points of C,
with R, in this order. Let K, .., K,, be the chords of S\R. taking indices
in such a way that each K, at the end traversing P, . touches p,. Then
there is a permutation 7 of {1, ..., n} such that P, is the other end point
of K.

If J, is orientation-preserving, the total number of self-crossings of C, is
equal to

d.
cr(m)+n* Y ( '7'> (47)

rel’

Now if 7' < 7 for some permutation =’ then there exist Reidemeister moves
changing C, so as to change 7 to 7'. Since C, is a minimal counterexample,
cr(n) is as small as possible. Hence by Theorem 4, 7 is minimally crossing
among all conjugates of 7.

Now if €} is a minimally self-crossing closed curve freely homotopic to
C,, and we would move C’, similarly close to G, we would obtain a per-
mutation n’ conjugate to 7, and hence the number of self-crossings of ('
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is not less than (47). Therefore, C, attains a minimum number of self-
crossings.
If J, is orientation-reversing, the total number of self-crossings of C, is

equal to
n 5 d,. |
<2>——cr(n)+n Y < 5 ) (48)

rel’

Then we can proceed similarly to the orientation-preserving case, using
Theorem 5.
Next, suppose that k=2 and that G, # G,. Then

cer(Cy, Cy) = Z nod.\nsd. -, (49)

vel”

which number is also equal to mincr(C,, C,) by Baer’s theorem [1]. This
contradicts the fact that C,, C, is a minimal counterexample.

Finally, suppose that k=2 and G,=G,. Then we may assume that
J, =J,. We can now proceed as in the case k = 1. We obtain a permutation
m of {1, .., n} with orbits of sizes n, and n, (with n:=n, +n,).

If J, is orientation-preserving, the total number of crossings (including
self-crossings) of C, and C, is equal to (47). Like in the case k=1, it
follows that C,, C, is minimally crossing. (Note that if cr(C', Ch)=
mincr(C,, C,) for some C, ~ C, and C ~ C,, we can apply Reidemeister
moves so as to obtain moreover that cr( ")) =mincr(C,) and cr(Ch)=
mincr(C,), since we have finished the case A =1 (using (12)).)

If J, is orientation-reversing, the total number of crossings (including
self-crossings) of C, and C, is equal to (48). Then we can proceed similarly
to the orientation-preserving case above. J

13. THE TORUS AND THE KLEIN BOTTLE

The only two surfaces for which we have not proved yet Theorem 1 are
two Euclidean surfaces: the torus and the Klein bottle. The difference with
the hyperbolic case is that on these surfaces there is not a unique geodesic
freely homotopic to a given closed curve if it is orientation-preserving.
However, in that case any two such geodesics can be moved in two essen-
tially different ways to each other. This enables us to remove a point of the
surface and to obtain a reduction to the hyperbolic case.

PROPOSITION 15. Theorem 1 is true in case S is the torus or the Klein
bottle.
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Proof. Let C,,.., C, form a minimal counterexample for the torus or
the Klein bottle S. So k=1 or k=2. We may assume that if J is any
geodesic freely homotopic to any C,;, and L and L’ are two different liftings
of J, then dist(L, L')>1. (Necessarily, L and L' are parallel lines.) By
Proposition 13 we may assume that dev(C;) < 1.

Then there exist geodesics J, .., J, such that C, ~J/ for some »; and
such that dist(D;, L,) <} for some liftings D, and L, of C, and J, respec-
tively. Let C; ~ C, be such that C', ..., C} is minimally crossing. Again by
Proposition 13, we may assume that there exist geodesics J; such that
C’ ~J'" and such that dist( D}, L}) < § for some liftings D} and L} of C'; and
J'; respectively. Since any two different liftings of any J, are parallel line at
least at distance 1 apart, and similarly for any two liftings of any J', and
since any liftings of J; and J' are parallel lines for any fixed /, we can delete
a point x from S such that no C; and C' traverses x and such that for each
i, C; and C} are freely homotopic also in S\{x}. As S\|x} is hyperbolic,
Theorem 1 is reduced to the hyperbolic case. J

14. FORMULAS FOR CROSSING NUMBERS

As further consequences of the methods given above we give more
explicit expressions for the minimal crossing number of closed curves on
hyperbolic surfaces.

THEOREM 6. Let C be u closed curve on a hyperbolic surface, and let J
be the geodesic und n the natural number such that C ~ J". Then:

(i) mincr(C)=n?-cr(J)+n—1if J is orientation-preserving,
(ii) miner(C)=n>-cr(J)+Ln—1/2] if J is orientation-reversing.

Proof. We may assume that cr(C)=mincr(C). In particular, no series
of Reidemeister moves can decrease cr(C). Let G be the image of J, and let
7 and E denote the vertex set and edge set of G. For each veV, let d,
denote half of the valency of v in G.

We apply the same techniques as in the proof of Proposition 14 to move
C close to G. By the fact that cr(J) =Y. ,-(4) and by (18), (34), (47), and
(48). the formulas follow. ||

THEOREM 7. Let C, D be two closed curses on a hyperbolic surfuce, and
let J, K be geodesics and m,n be natural numbers such that C~J" and
D~ K" Then

(1) miner(C, D) =2mn-cr(J)+min{m, n} if J~K and C und D ure
orientation-reversing,
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(i) miner(C, D)=2mn-cr(J) if J~K and C or D is orientation-
preserving,

(i) miner(C, Dy=mn-cr(J, K) if J + K.

Proof. Similar to the proof of Theorem 6, now using (18), (34),
and (39). |
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